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The perturbation of a turbulent flow by an organized wavelike disturbance is 
examined using a dynamical, rather than phenomenological, approach. On the 
basis of the assumption that an infinitesimal perturbation results in a linear 
change in the statistics of the turbulence, and that the turbulence is either weak 
or that the turbulent perturbations are quasi-Gaussian, a method for predicting 
the perturbation turbulent Reynolds stresses is developed. The novel aspect of 
the analysis is that all averaging is delayed until the dynamical equations have 
been solved rather than attempting to find, apriori, equations for averaged quan- 
tities. When applied to long-wave perturbations the analysis indicates that the 
perturbation shear stress is of primary dynamical importance, and that this 
stress is determined by the principal component of mean shear through a relation 
which depends on the spectrum of the turbulent velocity component parallel 
to the gradient of the undisturbed mean velocity (the component perpendicular 
to the wall in a turbulent boundary layer). Theoretical arguments and observa- 
tions are used to estimate the form of this spectrum in a constant stress shear 
layer. This results in a prediction of the constitutive law relating turbulent stress 
and the mean flow. The law is visco-elastic in nature, and is in agreement with the 
known constitutive relation for stress perturbations to a constant stress bound- 
ary layer; it resembles the eddy viscosity relation used successfully by others in 
describing perturbations in turbulent flows. The details of the constitutive law 
depend on how well the turbulence obeys Taylor’s hypothesis that phase velocity 
equals mean flow velocity, and some insight into this question is given. 

1. Introduction 
The prediction of the mean velocity and momentum fluxes in turbulent flow 

is a central and persistent problem in fluid mechanics. A special aspect of this 
subject which has received considerable attention in recent years is the pre- 
diction of the behaviour of small-amplitude coherent perturbations introduced 
into a turbulent flow with a parallel mean velocity and a known statistical de- 
scription of the turbulent component. Interest in this area stems, in part, from 
the intrinsic importance of particular problems of this type, such as the deter- 
mination of the stability of the mean component of turbulent flows and the pre- 
diction of the mean description of turbulent flow over a wave. But, from a more 
general point of view, these problems are particularly interesting because they 
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represent a uniquely attractive context in which to study the dynamics of turbu- 
lent flows. This attractiveness stems from the significant simplification to both 
experimental and theoretical studies resulting from the linearity of sufficiently 
small perturbations. 

The problems of interest here may be described in terms of the following 
experiments. Suppose we begin with a flow apparatus capable of producing a 
turbulent flow in which the mean flow velocity U is in the x1 direction and has 
the magnitude U(x,); similarly all the statistics of the turbulent velocity depend 
oniy on x3. This ‘parallel in the mean’ flow will be called the primary or undis- 
turbed flow. The constant stress boundary layer or fully developed turbulent 
flow in a pipe are examples of such parallel in the mean primary flows. Now 
suppose the experimenter is able to introduce into his apparatus some deter- 
ministic infinitesimal disturbance which, in a mathematical sense, would be a 
prescribed perturbation of the boundary conditions. This perturbation might, 
for example, be a small-amplitude wave on one of the lateral boundaries, or a 
vibrating ribbon upstream of the measurement area. We are interested in pre- 
dicting the mean flow in the perturbed condition, assuming the complete statis- 
tical description of the primary state is known. The term ‘mean’ is defined 
as the average obtained from a large number of similarly prepared realizations 
of the perturbed flow in all of which the imposed boundary perturbations are 
identical. Operationally this is accomplished by adopting, in each realization, 
a co-ordinate system xl, x2, x3, t ,  such that the imposed boundary perturbations 
all have the same description. Then the mean value (g(x, t ) )  is the average over 
many realizations of the value of g at  the fixed point (x, t ) .  

In  each realization of the primary flow, the velocity is U(x,) + u(x, t ) ,  where 
the mean of the turbulent component u is zero. In  each realization of the per- 
turbed flow, the velocity is U(x,) + (U) +u’. Momentum equations describing 
the mean flow can be obtained by the usual technique of averaging the Navier- 
Stokes equations ; these equations involve the turbulent Reynolds stresses, 
which are ( -punurn) and (-pukuA) in the primary and perturbed flows re- 
spectively. If ( W ) is sufficiently small, a linear equation for the mean perturba- 
tion (see Hussain & Reynolds 1972b; Davis 1972) 

may be obtained by subtracting the equation for the primary flow from the equa- 
tion describing the perturbed flou. Here (P) is the mean perturbation pressure 
divided by density, and R,, = ( - u: u;) - ( - u,u,) is the density normalized 
perturbation turbulent Reynolds stress. 

The prediction of the perturbation turbulent stress Rn, is of course the 
central difficulty in deducing the dynamics of perturbations in turbulent flows, 
and is the subject of this paper. To date, all attempts to deduce such dynamics 
have employed phenomenological laws of various degrees of complexity to pre- 
dict the turbulent stresses. One of the most fascinating results obtained from the 
comparison of experimental mea,surements and the predictions of such theoretical 
studies is the surprising success of predictions based on an eddy viscosity rela- 
tion between the stresses R,, and the mean rate of strain a,( W,). Both Hussain 
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& Reynolds ( 1972 b) ,  who were investigating wavelike disturbance introduced in- 
to a fully developed turbulent channel flow by a vibrating ribbon, and Davis 
(1972), who was investigating perturbation of a turbulent boundary layer by a 
wavelike disturbance of the boundary, obtained encouraging, if not conclusive, 
results using the scalar eddy viscosity that is consistent with the undisturbed flow. 

While the success of these eddy viscosity models is tantalizing, it fails to be 
completely satisfying in two ways. (i) The comparison of theory and experiment 
is indirect, in the sense that the perturbation Reynolds stresses are not com- 
pared directly to the rate of strain. Rather, selected properties of the mean flow 
are compared with dynamical solutions of the equations of motion obtained by 
assuming a viscous relationship between stress and rate of strain. (ii) Perhaps 
more unsatisfactory is the lack of any plausible dynamical explanation of why 
the phenomenologically motivated eddy viscosity concept should apply to 
turbulent flows. Apart from the highly idealized quasi-molecular picture leading 
to mixing length theories, there does not seem to be any physical model that 
leads to a viscous constitutive relation for turbulent fluids. In  fact, Townsend 
(1966), Crow (1968), Lumley(l970) andotherssuggest thatinmanywaysaturbu- 
lent flow more nearly resembles an elastic medium. 

Here a highly simplified dynamical model is used to investigate the generation 
of Reynolds stresses by an infinitesimal perturbation of a turbulent shear flow. 
The philosophy is that a dynamical description, even one based on very severe 
mathematical approximations, will lead to a more reliable form for the con- 
stitutive equation of a turbulent fluid than can be obtained by phenomenological 
analogies with processesof uncertain relevance to turbulence. Theobjective of this 
study is thus to determine the general structure, if not a completely quantitative 
form, of the constitutive relationship between the mean velocity and the mean 
Reynolds stresses in a perturbed turbulent shear flow. 

The dynamical model employed is based on several assumptions and simplifi- 
cations. Some of these are mathematical and are introduced only to simplify the 
analysis to the point where a solution can be obtained without extensive numeri- 
cal computation. Certain assumptions are necessitated by the lack of a sufficiently 
detailed experimental description of the kinematics of the undisturbed turbulent 
shear flow, and these assumptions can be verified or corrected only by more 
measurement. But, there are two fundamental assumptions, essential to the 
entire approach, which should therefore be emphasized at the outset. But before 
proceeding to a discussion of these it is necessary t o  introduce certain definitions. 

Let the velocity associated with a single turbulent flow realization with un- 
disturbed boundary conditions be U + u, where U is the mean of a large number 
of such realizations. If this flow is described by the deterministic Navier-Stokes 
equation, then, in principle at  least, this flow could be reproduced, given perfect 
control of the initial and boundary conditions. The fundamental assumption of 
the model introduced here is that, if this flow were reproduced in the presence of 
an infinitesimal boundary perturbation, then, in the observed velocity U + u +U) 
the perturbation velocity U would be, in a statistical sense, small. The deviation 
from the unperturbed flow is U, which has both a mean part (U } and a turbulent 
part; the velocity u +U is equal to u’ + (U} of the previously given example. 
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The statistically small assumption is required to arrive a t  linear dynamical 
equations for the perturbation velocity. The validity of the assumption does not 
require that U itself be small, only that it enter linearly into the statistics of the 
perturbed flow, so that, using a loose notation for order of magnitudes, 

U ( U )  9 ( U U ) ,  (UUU) 9 (UUU). Pa )  

There might be a serious philosophical question whether this assumption is 
correct, since we normally consider turbulent flows to be unstable, in the sense 
that an infinitesimal perturbation results in an order unity change of the flow. 
This idea is not, however, inconsistent with the ‘statistically small ’ assumption; 
but it does not raise the question of its validity. Unfortunately, there seems to 
be no straightforward way to check this hypothesis; thus one is forced to rely on 
indirect tests of the predictions made using the assumption. It should be pointed 
out, however, that the hypothesis appears to be self-consistent, in that the per- 
turbation velocities obtained by accepting the hypothesis are statistically small 
if theboundary perturbation issmall. It should also be noted that this assumption 
is equivalent to the apparently reasonable hypothesis that the perturbation 
stress R is linearly related to the amplitude of the imposed boundary perturba- 
tion. 

The second major assumption involved in this development concerns averages 
of the third-order tensor u,u, U, : 

(umurnU1) N (Un%n> (U,>* (2 b)  

This will be true in either of two cases. (i) It will be true if u andU have approxi- 
mately jointly Gaussian probability distributions. (ii) It will be true if the turbu- 
lence is weak, in the sense that <u2) < U2.  This is obvious in the limiting case of a 
laminar flow, where U = (U). It will be seen in $2 that this approximation 
remains formally correct so long as (using a loose notation for orders of magni- 
tude) u < U .  

The structure of the model resulting from these assumptions is such that the 
predictions of the mean perturbation velocity (U ) and the mean turbulent Rey- 
nolds stress tensor depend on somewhat detailed knowledge of the complete 
wavenumber-frequency spectrum of the primary turbulent velocity u. There 
exists a considerable body of data concerning the frequency spectrum of turbulent 
shear flows, particularly for the very important example of a constant stress 
boundary layer. Unfortunately, the available data are not adequate to allow 
determination of the wavenumber spectrum. For example, most descriptions of 
the downstream structure of the turbulence are based on Taylor’s (1938) hypo- 
thesis that the frequency w of a turbulent component is equal to U . k, where 
k is the vector wavenumber. Taylor’s hypothesis, is of course, an approximation, 
and is not expected to be precise, either when the turbulent intensity is large, 
or when U is not spatially uniform. It is expected that the spectrum a t  a given 
wavenumber will be peaked near the frequency U . k, but this peak will have a 
finite width Aw. On dimensional grounds, i t  is expected that the bandwidth Aw 
will be related to the frequencies (u2)*k and I V . UI . Using the data of Morrison & 
Kronauer (1969)) a quantitative estimate of A@ for a constant stress boundary 
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layer will be made and used to find an approximate description of the required 
features of the horizontal structure of the turbulence. With regard to the vertical 
structure of the turbulence, the situation is even more uncertain, and I feel this 
results in the greatest limitations on the present theory. 

The model developed here results in a functional relation between (U) and 
the turbulent Reynolds stress tensor R, which is visco-elastic and involves no 
adjustable constants. It is encouraging that the predictions are, within the un- 
certainty of the data on spectra of U, in agreement with the known relation 
between mean flow and stress associated with the ‘law of the wall’. 

2. The dynamical model 
As discussed in $1, the dynamical model considered here is based on a hier- 

archy of simplifications, some fundamental and others required for computational 
economy or necessitated by the lack of a complete statistical description of 
the primary turbulence. The fundamental assumptions (2) allow development of 
a formally exact method of describing the perturbed mean flow. The general 
structure of the model is novel, and deserves exposition by itself, without 
consideration of the additional simplifications required to make it operationally 
useful. In  $ 2 the problem of relating the turbulent stress R to the mean velocity 
(U) is posed mathematically and the general method of solution is outlined 
formally. Application of the method is considered in $4 3 and 4. 

From the definitions of the velocity components ($ I ) ,  it  can be seen that the 
perturbation component obeys the continuity relation 

anun = 0. ( 3 4  

If we consider a parallel undisturbed velocity U along x1 which varies only with 
x3 then the perturbation momentum equation is 

(a,+ ua,) U,+61,u’u,+a,P-va,a,u, = -a,(u,U,+U,Un)+S,, ( 3 b )  

where S, involves products of the form U U  and P is the perturbation pressure 
divided by the fluid density. Here interest is restricted to flow past smooth walls, 
so that 

U, = 0 at x3 = H,,,H,. 

This is appropriate, for example, for the vibrating-ribbon experiment of Hussain 
& Reynolds (1970, 1972a), but not for flow over a wave. This latter, more com- 
plicated, case will be considered in a later paper. 

Let W be the vector with components [U,, U,, U,, PI. Then (3) can be written 
symbolically as 

where the rows n = 1 , 2 , 3  are ( 3  b)  with 

LnmWm = Qn, ( 3 4  

Q, = -a,( U,U, + Urn%,) + S,. 

The row n = 4 is (3a )  with Q4 = 0. The boundary conditions ( 3 c )  provide six 
more rows of the operator L,, with Q, = 0. 
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The quantity of eventual interest is the mean flow described by (W). Aver- 

where D,, = S,, for n = 1 , 2 , 3  and zero otherwise; R,,, the same quantity as 
appears in (I) ,  is related to the velocity components through 

R,m= (- t ~ n  Urn) + (-umUn>* 

The first three rows of (4) are identical to ( l ) ,  except for notation and the inclu- 
sion of the direct viscous effects retained in the operator L. 

Historically, two basic approaches have been employed to predict R. The first 
is to assume a phenomenological constitutive relation such as the eddy viscosity 
law of Hussain & Reynolds (19723) or the more complicated eddy visco-elasticity 
law of Davis (1972). An apparently more sophisticated approach is to multiply 
( 3 b )  by uk, then average. This results in an underdetermined system of Reynolds 
stress conservation equations, which requires introduction of additional pheno- 
menological relations connecting the unknowns (W) and R to the additional 
variables (u, P) and (unam a, U,) that appear. This method was found to be un- 
successful by Davis ( 1972). 

The purpose of this paper is to introduce a method of predicting R which avoids 
the phenomenology of these earlier approaches. The novel feature is that all 
averaging is delayed until the dynamical equations have been solved, which is to 
be contrasted with the usual procedure of attempting to determine a set of equa- 
tions which describes the average of the various relevant flow variables.? The 
technique of delaying the information-losing step of averaging eliminates the need 
for phenomenological relations between averages of flow variables, since the 
equations of motion determine completely the individual realizations of these 
variables. 

The differential equation and boundary conditions represented by ( 3 4  
are all linear and, consequently, the operator L has an inverse such that the 
solution to the differential system can be represented as 

U,(x,t) = LiiQ,(y,r) (n = 1,2 ,3) .  

The operator L-1 involves an integral over the space variable y and time variable 
r of the product of Q(y, r )  and the appropriate Green’s function. The variables 
x, t appear only parametrica,lly in L;;. If this equation is multiplied by u,(x, t ) ,  
then urn may be passed through the operator since, so far as the active variables 
y and r are concerned, urn is a constant. Since the operator L is deterministic, 
the process of averaging also passes through the inverse, so that 

(umUfi)(x, t )  = LLi(um(x,t)Qk(y,r)) (n = 1,233). 

(It is the step of passing the average through L - I  that prevents this method from 
being applied directly to flow over a wavy boundary, because the wavy-wall 

t I have recently become aware that the general method is similar to one used in the 
study of wave propagation in random media, and is a first approximation t o  a powerful 
technique developed by Keller (1964). 
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boundary conditions in L involve the turbulent velocities and consequently 
neither L nor its inverse is deterministic.) 

The above expression for (un U,) is greatly simplified by the basic assumptions 
(2). Thus (2a )  states that S, which appears in Q, can be neglected, and (2 b)  allows 
the average of the triple products ( u u U )  to be simplified so that 

where unprimed quantities are evaluated at x and t ,  while primed quantities 
are functions of y and r ,  the integration variables of L-1; here D has the same 
meaning as in (4). 

While the complex notation tends to obscure it, (5) has a simple and interesting 
physical interpretation. Examination of this equation allows isolation of that 
component of the perturbation velocity U which, according to the approxima- 
tions employed, gives rise to the perturbation Reynolds s-s (un U,). Thus 
we may define an ' active ' turbulent velocity component U by 

A 

Lmnwrn = -Drn/cal(ul(Uk> +U/~ ( "Z ) )?  (6) 
which replaces ( 3 4 .  From (5) it follows that 

Clearly, the active turbulent component U is that part of U which appears 
in the turbulent Reynolds stress in (5). Mechanically it is obtained by neglecting 
in (3) the contributions to Q of products of the forms 

U U  and u ( U - ( U ) ) .  

It is important t o  note, however, that the validity of (6) does not require that 
these quantities be small in any sense other than that implied by the fundamental 
' statistically small ' assumptions ( 2 ) .  

From (5) the major difficulties involved in computing the perturbation 
Reynolds stresses are easily seen. (i) A very complete statistical description of the 
primary turbulence field is required; the quantities (uu') are two-point, two- 
time covariances of the undisturbed turbulence, which is not stationary in the 
x3 direction. (ii) Construction of theinverse operator L-lis difficult, andin general 
could be accomplished only through extensive numerical computation; even so, 
a different inverse operator would be required for every Reynolds number of the 
primary flow. As will be seen in 3 3, these difficulties can, to some extent, be over- 
come in the special case of long-wave perturbations. 

A 

(un Urn) = (~ , ' Jrn>* 

3. Long-wave approximation 
The general method outlined in 92 is, in principle, capable of producing a con- 

stitutive relation which relates the mean turbulent stresses (un U,) to the mean 
flow (U,). But, unfortunately, putting this general method into practice 
requires a description of the undisturbed turbulence which is considerably more 
detailed than anything that can be obtained from presently available measure- 
ments. Further application of the method without approximation would result 
in a constitutive relation of such complexity as to be nearly unusable. One is led, 
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then, to the conclusion that there is no simple constitutive relation, even for the 
highly idealized circumstances under consideration. 

Rather than abandon further examination in recognition of the impossibility 
of finding an exact and useful result, I have chosen to make some strong mathe- 
matical approximations which lead to a tractable analysis, and produce some 
simple results closely connected with the phenomenologically motivated concept 
of an eddy viscosity. The most serious of these approximations involves the re- 
striction that both the primary turbulence and the perturbation velocities are 
composed of ‘long’ waves, in the sense that they vary much more rapidly in the 
x3 direction than in the xl, or downstream, direction. This is a reasonable, and not 
unduly constrictive restriction to place on the mean perturbation (U). But, 
when applied to the primary turbulence u, the long-wave approximation is not 
so much a restriction as an assumption about a prescribed quantity, and, un- 
fortunately, it  appears from the available data that it is not a very accurate 
assumption. While it is true that the energetic components of turbulent shear 
flows do have somewhat longer scales in the downstream than in the x3 direction, 
the distinction is not clear-cut, and certainly not sufficient to warrant applica- 
tion of an asymptotic expansion in this ratio. 

There is, however, a somewhat subtle reason for believing that the long-wave 
approximation may be much more accurate than a straightforward scale analy- 
sis would suggest. As will be seen, the approximation leads to simplified forms 
of ( 3 4  in which only the x3 derivative of the horizontal velocities U, and U, 
are retained on the right-hand side. These velocities may be considered as the 
sum of Fourier modes with downstream wavenumber k, and angular frequency w .  
It will be seen that each of these modes has very large shears near its critical 
height, where Uk,+w = 0, and, consequently, when the term 

Qn = -a,(u,u,+ U m u n )  

is considered as the sum of the interactions between ZL, and each of these modes, 
it  is seen that the retained term u3a, Un is by far the largest a t  least in the neigh- 
bourhood of the mode’s critical level. This assertion can be evaluated only by 
careful examination of the details of the analysis to be presented. 

In  this section we consider spatially and temporally periodic perturbations of a 
constant stress boundary layer described, for x 9 zo, by 

U = U, In (z/zo), 

where z = x3. The mean perturbation (W,) is restricted to have no x, dependence 
and to propagate parallel to the x1 axis. The region near the surface where vis- 
cosity has a direct influence (the viscous sublayer) is ignored, and it is assumed 
that the viscosity is sufficiently small that the limit Y -+ 0 is appropriate. In  
keeping with the discussion leading to ( 5 ) ,  the perturbation velocity U, is taken 
to  vanish at  z = 0 and as x + 00. 

The velocities may be considered as made up of Fourier modes of the form 
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where k and s are the pseudo-vectors [w, k,, k2] and [t ,  xl, x2] ,  respectively. The 
mean perturbation (U,) is associated with the wavenumbers k,, where 

k, = [wo, ko, 01. 

The mean perturbation is taken to be 'long' in the sense that k,z, < 1, where 
Z, is the critical height at which Uk, + w, = 0. The immediate consequences of 
this restriction are as follows. 

(i) The turbulent stresses (u, U,) influence the mean dynamics only relatively 
near the surface. This is so because, at heights such that k,z is 0(1) or larger, 
the relative velocity U + wo/ko is large compared with a typical turbulent velocity 
and the term (a, + Ua,) (U,) and the pressure gradient dominate the mean flow 
equation (4). 

(ii) In  the turbulence-dominated region, the vertical scale of (U) is small 
compared with the horizontal scale. It follows from this and the equation of 
continuity that (U,) > (U,). 

Certain assumptions are also made about the energetic components of the 
primary turbulent velocity u. 

(iii) The turbulent velocity components are of comparable magnitude in all 
three directions. 

(iv) The 5, scale of the turbulent components is long compared with the 
vertical scale, which is assumed to be somewhat less than O(z). This latter 
assumption receives some support from the experimental results discussed 
in $4. 

A straightforward application of restrictions (ii)-(iv) simplifies (B), the equa- 
tion of motion for the turbulent perturbations, to 

A 

Lt,mwm = - ' ~ T L ~ ~ ~ S  ('l>* P a )  

The interaction of the mean flow and the turbulence has been simplified to 
consideration of vertical advection of horizontal mean momentum by the turbu- 
lent vertical velocity. These equations are most useful when transformed to 
Fourier space, where they can be collapsed to a single differential equation for 
each frequency-wavenumber k. This is done by introducing (7) (and an equiva- 
lent representation for the pressure) into (8a) ,  multiplying the x1 component by 
kJL (here k2 = li: + leg), then multiplying the x2 equation by k21k and adding these 
two. Subtracting the x, equation multiplied by 7c from the x, derivative of the 
combined x,, x2 equation then yields 

where $ is a pseudo-stream function defined by 
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It will be recognized that the operator i@ in (8 b)  is the Orr-Sommerfeld opera- 
tor, which plays a central role in the theory of the stability of parallel laminar 
shear flows. As shown by Lin (1955), in the limit v -+ 0 the solution of the Orr- 
Sommerfeld equation can be approximated by the solution of the inviscid equa- 
tion obtained by setting v = 0 and taking the frequency w, which is actually real, 
to be complex with a vanishingly small negative imaginary part. The approach 
employed here is to find +by setting v = 0 in (8 b )  and replacing win that equation 
by o - ip, where p is an infinitesimal positive number which later in the analysis 
will be allowed to vanish. This procedure reduces ( 8 b )  to 

dR [W) ($- k2)  - n"(k)] $(k) = M&k) = - dz (k), (9) 

k d 
where R(k) = -2 v3(k-l)- (V,(l)) and Q(k) = i w + i U k , + , ~ ~ ,  

I =  f k a  dz 

Turning now to the mean momentum equation (a), it follows from the basic 
long-wave assumption (i) that the right-hand side can be simplified to 

A h 

~ ? Z , % R m 3  = -Dnma3((u3UnJ + (%8U3))* 

Since by definition the mean flow is independent of x2, the components (u2 G3 ) 
and (u3U2)  vanish and the remaining components can be derived from +. 
To make this specific, consider the computation of (us U,), which, it will be seen, 
plays the dominant role in the mean flow dynamics. Clearly, 

A 

A 

(-u3U,) = C T(l)exp{il.s), 
I= i k o  

where ~ ( 1 )  = C (- w3( l -  k) V,(k)) = (- v3(1 - k ) -  - a'(k)). ( i o a )  
k k k, dz 

In general, the inverse of the operator M in (9) will be an integral operator, so 
that, letting z, denote the active or integration variable, 

and, substituting the definition of R, 

This result is the Fourier analogue of ( 5 )  presented in the discussion of the 
general method. Certain features of the physics of Reynolds stress generation can 
be seen directly from this result. (i) As will be shown in 94 the primary turbulence 
modes un tend to be energetic only relatively near their critical heights, where 
w + U k ,  is small. Consequently, the correlation (vn( - k, z )  vm(k, 2,)) will be small 
unless z-z, and w i -  Uk, are both small. Thus, from ( l o b )  it follows that the 
Reynolds stress at  a height z is primarily determined by the mean flow near the 
same elevation. (ii) Since we are concerned only with levels a t  which k,z  is small, 
it is known that the energy of the primary turbulence is concentrated near 
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k,z = O( 1)  ; it  follows that the major contribution to (1Oa) comes from those @(k) 
with values of k large compared with k,. Hence the major contribution to 7(k0) 
comes from the interaction of w3(k,- k) and @(k) with k II k- k,. Since v(k) 
is concentrated near o+ Uk,  = 0, it follows that the important components of 
$(k) are also associated with small values of w + Uk,.  

It is known from the theory of hydrodynamic stability that the operator 
M in (9) is nearly singular at  the critical point. Consequently, the functions 
$(k) vary rapidly near that point and, in fact, as p +- 0 the z derivative of @ 
becomes infinite at  the singular point and is large in that neighbourhood. As 
observed above, the nature of the primary turbulence correlation in ( l o b )  
dictates that it is the behaviour of $(k) near its critical level that plays the main 
role in generating the turbulent stresses. Since in this region $'(k) % k$(k), and 
of the stresses relevant to the mean dynamics of a long-wave perturbation only 
( u 3 U 1 )  involves this quantity, we are led to simplify the mean momentum 
equation (4) to 

Lrm(wm) 61n63R13 61na3( -u3U1) *  (11) 

It can be seen by deriving the expressions analogous to  (10a) for the other stresses 
that this involves neglecting O(u$/z) and retaining O(ud@/dz). 

It remains now to develop a computationally useful inverse to M and use this 
inverse to compute (u3 U,) from ( l o b ) .  It has already been mentioned that the 
important components of $(k) will have their critical heights at  values of z 
O(l/k,) or slightly less. In  the critical region $' B k@; consequently (9) can be 

It is reasonable that below the critical level, where kz < 1, this equation will 
apply. Because the viscous stresses have been neglected, the boundary con- 
dition on @' at z = 0 must be relaxed, but $ = 0 a t  x = 0 still applies. There is 
presumably a region in the viscous sublayer where viscous effects rapidly bring 
$' t o  zero, but this region is outside our range of consideration. The general 
solution appropriate to the single boundary condition at  z = 0 is 

To establish the constant A ,  it  is necessary to establish the behaviour of @ as 
z --f co. This is most easily accomplished by noting that as z becomes large the 
appropriate scale of variation is l / k ,  and, in terms of the stretched co-ordinate 
7 = kz, (9) becomes 

where p has been neglected in R, and z, is the critical height of the frequency 
wavenumber k. As z increases above the value z,, the ratio In (V/kz,) q2 becomes 
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large, and an approximation to @ can be obtained by neglecting the term 1/72. 
The appropriate solution which vanishes as 7 + co is then 

In the limit 7 + 0, this approaches 

The inner solution matches with this outer solution if A,  = A ,  = 0, as is easily 
seen by integrating the inner solution, with A ,  = 0, by parts to give 

which clearly matches the outer solution as 
Since in computing the turbulent stress it is the behaviour of $' in the inner 

region that is important, it  is the integral operator in (12) that may be identified 
as M-1 in (10). Thus the perturbation shear stress is determined by 

+ 00. 

A somewhat more compact representation can be given in terms of the wave- 
number-frequency cross-spectrum of u3. Thus the value of ~ ( 1 )  at height z is 

where D,(I, Z )  = dk a-1 (k + 1 , ~ )  X2(k, Z ,  x ) ,  J 

X,(k, x ,  x 2 )  = lim s k, Ak-0 Aw Ak, Ak, 

8, is the cross-spectrum with respect to frequency and downstream wavenumber 
of the vertical velocity at  two heights. The integrals over dk include only the 
k,, w plane. 

4. The constitutive relation 
Equation (13a) is a constitutive relation connecting ~ ( l ) ,  the Fourier amplitude 

of the turbulent shear stress R13, to (V,), the Fourier amplitude of the mean 
velocity perturbation (U,). The Do term suggests the eddy viscosity law of Hus- 
sain & Reynolds (1972b); as i t  turns out, Do is generally a complex-valued func- 
tion and is, therefore, more properly compared with an eddy visco-elasticity of 
the general type suggested by Davis (1972). The D, term is not so easily charac- 
terized, but, as is required by the long-wave approximation employed here, this 
term is insignificant for long perturbations. 
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The constitutive parameters Do and D, are weighted integrals of S,, the spec- 
trum of the undisturbed turbulence, and involve no adjustable parameters. But 
obtaining quantitative estimates of the constitutive parameters requires a rather 
extensive knowledge of the statistics of the undisturbed flow, and the required 
observational data are not presently available. What follows here is an attempt 
to  estimate the structure of S, from available data and theoretical concepts. The 
aim is to predict Do and compare the prediction with experimental evidence on 
perturbation of turbulent shear flows, particularly the well-established law of 
the wall for constant stress boundary layers. Unfortunately, the uncertainties 
associated with estimating S,  are too great to allow this to be a conclusive test 
but, in principle at  least, this procedure would impose a stringent test of the 
theory. It is encouraging that the predicted Do is not inconsistent with observa- 
tion. 

On dimensional grounds, it can be argued that the energy containing portion 
of the spectrum S, is of the form 

where R also depends on all possible dimensionless groups but is defined such 
that R(0) = 1.  The dimensional factor is dictated by the requirement that the 
integral of S, over w and k, be equal to the variance (u:), which is independent 
of 2. 

In  evaluating the integrals (13b, c) ,  it  is convenient to have R and F expressed 
in terms of functions that can be integrated analytically; for this purpose the 
simple forms 

have been chosen. These correspond to a downstream wavenumber spectrum 
which begins to fall off at Ic, = a/z and a frequency spectrum centred around the 
frequency w = Uk, and having a bandwidth Aw = PU/z.  They are clearly in- 
adequate approximations, but the major errors in the results appear to result 
from uncertainties in the data from which a and p are estimated rather than the 
inaccuracies inherent in the functional forms. 

Most experimental observations of the turbulent fluctuations in constant stress 
boundary layers are reported in terms of pseudo-wavenumber spectra obtained 
by accepting Taylor's (1938) hypothesis that the turbulence is 'frozen' into the 
mean flow, and consequently obeys the dispersion relation w = - Uk,. This is 
equivalent to assuming P to be a delta function centred at  w = - Uk, and cor- 
responds in (15b) to letting ,8 approach zero. But of course, Taylor's hypothesis 
is not strictly correct, and, while the energy distribution is concentrated near 
w = -  Uk,, the distribution has a finite bandwidth Aw. This bandwidth plays a 
crucial role in determining the nature of the constitutive law (13). 

As discussed by Lumley (1965), there are three reasons why Taylor's hypo- 
thesis should not be strictly correct. (i) The mean convection velocity U varies 
with x ,  and consequently, if a component contributes to the energy at  more than 
one height, it  follows that w cannot equal - Uk, a t  all points. It seems likely that 



686 R. E. Davis 

A $  

OAO 
0 

A 0% 

4 

I I I I I 

-4  -2. 0 2 4 6 X 

f 
FIGURE 1. Morrison & Kronauer’s spectrum P(o, k) against the frequency parameter 

f = (o+ Uk,)/(U,,k,). P normalized by an estimate of its maximum. 
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this will lead to a Aw of O( U‘). (ii) It is likely that a high wavenumber mode will 
be convected by large turbulent components as well as the mean velocity. This 
would be expected to lead to a frequency broadening of O(U,k,). (iii) The turbulent 
modes cannot be expected to be perfectly frozen, and will have some time de- 
pendence when viewed in a frame moving with the local velocity. The magni- 
tude of this time variation is not easily estimated, but it seems likely it will 
lead to frequency variations of approximately the same order as the two other 
effects. 

Morrison & Kronauer (1969) measured the spectrum P(w, k,) of the turbulent 
component u1 in a fully developed pipe flow. While this is not precisely the quan- 
tity required here, it  seems likely that their spectra should be similar in general 
structure to S,(w, k,, z, z) .  Their data are unique, in that it is possible to estimate 
from them the general form of P that determines the frequency dependence. 
From their published curves, I have constructed several cross-sections of P(o,  k,) 
at fixed k,. This was accomplished from a manuscript which contained full page 
versions of their figures 7 (p)-(v). The results, normalized to the maximum value 
of P at the selected value of k, and z, are presented in figure 1. The data cover 
values of k,z between 0-0044 and 2.0. From these curves it is evident that, for 
k,z > 0-1, the energy distribution is concentrated near w = - Uk,, and that the 
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FIGURE 2. Bandwidth Aw from Morrison & Kronauer against k,z. Symbols as in figure 1. 

bandwidth is proportional to Uokl, as Lumley suggests. It is also evident that, 
as E,z becomes small, the bandwidth decreases less slowly than Uok,, which is 
consistent with the suggestion that, for small k,, the bandwidth Awis proportional 
to U’. It appears plausible, then, to choose /3 = (U,/U)(/30+/31B,lklz~), which 
corresponds to a spectral density decrease of one half a t  the frequencies 

w = - U k , + A w ,  where Aw =PoU’+,8,1UoklI. 

From the Morrison & Kronauer data shown in figure 1, the bandwidth Aw was 
estimated and plotted in figure 2. The plotted curve corresponds to Po = 0.02 and 
/3, = 1.5; clearly these estimates are subject to considerable uncertainty. 

The frequency spectrum of us has been measured in the atmospheric boundary 
layer, where the Reynolds number is large and the constant stress layer is thick, 
by Volkov (1969) and Miyake, Stewart & Burling (1970). These measurement,s 
were taken a t  elevations where U,/U < 1, so that Taylor’s hypothesis is valid 
and (14) corresponds to 

The mean frequency spectra reported by these workers are presented in figure 3, 
along with the corresponding curve computed using a = 1.2. While the chosen 
functional form is clearly inadequate, the uncertainty introduced in the results 
is small compared with that arising from estimating the frequency function 3’. 

The function R(kl[z  - zz ] )  appearing in (14) is impossible to estimate from any 
data. However, Renters only into the computation of D,, and it can be shown that 
this coefficient is negligible so long as R is nowhere large compared with R(O), a 
supposition which appears reasonable. 
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FIGURE 3. Frequency spectrum S ( w )  normalized by (u i ) /w.  
-, equation (14) ; ---*, Miyake et al. ; - -, Volkov. 

Having specified the cross-spectrum S,, it is now possible to evaluate the 
constitutive parameters Do and D, directly from (13). The details of this computa- 
tion are given in the appendix, where it is shown that 

where y = Po + (oo + ko)/U’ and the imaginary part of the logarithm is taken 
between - &r and in. It is also shown in the appendix that, for the long-wave 
perturbations considered here, the stress associated with D, is negligible (as 
it must be if the long-wave approximation is to remain valid), and therefore 
the constitutive equation may be approximated by 

5. Conclusions 
The analysis has led to a quantitative prediction of the turbulent shear stress 

generated by long-wave perturbations of a constant stress boundary layer. 
The approach is based on specific statistical hypotheses and mathematical ap- 
proximations rather than phenomenology. Consequently, certain features of 
the analysis are testable by more exact solution of the dynamical equations, and, 
since the model involves no adjustable parameters, comparison with measure- 
ments could, in principle at  least, provide astringent test of validity. For example, 
the approximate solution of the Orr-Sommerfeld equation (8) can be tested 
through extensive, but straightforward, numerical solution. The long-wave 
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approximation is similarly testable by evaluation of the terms neglected on the 
right-hand side of (8) and numerical solution of that equation. Some verification 
of this approximation is provided by the demonstration in the appendix that the 
stresses associated with D, are negligible. 

The 'statistically small' assumptions are the only ones essential to the method 
and are apparently the most dubious. They are not easily verified except by 
comparison of predicted and measured turbulent stresses. The linearization 
assumptions (2a) do receive some a posteriori support from the fact that the 
analysis based on these assumptions results in perturbations that are regular 
functions of the boundary perturbation amplitude, and consequently obey the 
linearization assumptions when the perturbation amplitude is small. The quasi- 
Gaussian approximation ( 2  b )  is not so easily justified, except in the physically 
uninteresting case of weak turbulence. Hence the present analysis must be con- 
sidered only the first term in an expansion about the state of no turbulence. 

In  view of the limitations of the analysis it is encouraging that it produces a 
predicted stress against mean velocity relation which is not inconsistent with the 
one well-established experimental observation, namely the 'law of the wall '. 
According to this law, a small mean flow perturbation (U,) = sln (z/zo) of a 
boundary layer with the undisturbed shear stress ( - u1u3)  results in a perturba- 
tion shear stress T given by 

where K is von KkmQn's constant. This particular perturbation corresponds in 
the theory to k, = wo = 0, and the perturbation stress should then be given by (17) 
with Do computed from (16) when y = lo. This results in a predicted relationship 
between T and (U,) which is identical with (IS), except that the constant K is 
replaced by 

Volkov (1969) reported a vertical normal stress to shear stress ratio of 1.4, 
while Miyake, Stewart & Burling (1970) reported ratios ranging from 1.5 to 3.5. 
It is commonly accepted that Uo 2: 2.5(-u,u3)*. Using these values and the 
estimates aP, = 1-8 and Po = 0.02 from $ 4  (which were arrived a t  before attemp- 
ting this comparison) leads to a predicted value of K between 0.45 and 1-1, 
which is to be contrasted with the correct value of 0.4. 

In  view of the large uncertainties associated with the estimated form for S,, 
the fact that the theory is not inconsistent with observation must, to a large 
extent, be considered fortuitous. The model functions for F and K used in (14) 
were chosen primarily for convenience, and no estimate has been made of the 
sensitivity of Do to the particular function chosen. The available data were 
stressed very heavily in determining the parameters a,  Po and PI, and the ratio 
(T&/( - w1u3) is not well established experimentally. For example, the adjusted 
values aP1 = 2.1 and Po = 0-02 coupled with a stress ratio of 1-5, all of which are 
consistent with the data, lead to exact agreement with the law of the wall; 
similarly, small adjustments lead to predictions that are unacceptably different 
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FIGURE 4. Eddy visco-elasticity Do against (T = o + Uk,. 
The ordinate is Do U’/( -u1u3). 

from observation. The particular form of S,  chosen is not essential to arriving at  
an estimate of Do, and, when more extensive data are available, it will be worth 
while to recompute this parameter directly from (13) using a more accurate 
model. But, for the present, when the available data are so minimal this would be 
inappropriate. 

But to a large extent the question of precise numerical agreement of theory 
and experiment misses the mark. It seems to me that the most important 
feature of this analysis is that it provides a dynamical explanation for the 
success of the phenomenologically motivated eddy viscosity models of turbulence 
and may provide a rudimentary framework for developing useful empirical 
constitutive laws for perturbed turbulent flows. In this context it is instructive 
to  examine the general behaviour of the eddy visco-elasticity Do as a function of 
the intrinsic frequency c = w + Uk,. The real and imaginary parts of Do are 
plotted in figure 4 using the adjusted values of CC& Po and the stress ratio. The 
figure shows only positive intrinsic frequencies, since D,(o) is the complex con- 
jugate of Do( - r). 

From the general behaviour of Do one can see a possible explanation of the 
success of the eddy viscosity models of Hussain & Reynolds (19723) and Davis 
(1972). Both of these studies employed a constitutive relation which for long 
waves is approximated by (17)  with Do = 2 4  - ulu3)az in the constant stress 
portion of the flow. From figure 4 i t  is evident that, for lo+ Ukll < 0-IU’,  
this is a good approximation to the theoretical value. One expects that the turbu- 
lent stresses are of secondary importance, except near the critical layer where 
w + Uk,  vanishes and near boundaries where U’ becomes large. Consequently 
one might expect that, even though the constitutive relation is not strictly 
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viscous, neglect of the elasticity associated with the imaginary part of Do would 
not greatly influence the dynamics of the mean flow perturbations. The fact that 
Davis (1972) obtained similar predictions of surface pressure for flow over a 
wavy boundary using this eddy viscosity model C and eddy visco-elasticity model 
D tends to corroborate this conjecture. 

It is also of some interest to compare the present dynamical constitutive 
relation with the phenomenological eddy visco-elasticity model advanced by 
Davis (1972). That model was based on the conjecture that the perturbation 
turbulent stress is determined by the recent history of rate of strain experienced 
by a fluid parcel moving a t  the mean flow velocity. In  the case of long-wave 
perturbations,this leads to a relation for the perturbation turbulent shear stress 
of the form 

(a1 U, + u3 u,> (x, t )  = 1 - ~ ( 7 )  a, (u,(x + %, uT, t + 7) ) dT, 
where is a unit vector and the memory function H must vanish as T + - co 
if the constitutive relation is not purely elastic. This form of phenomenological 
model leads to the constitutive law (17) with Do given by 

~ , ( g )  = 1’ ~ ( 7 )  exp {iw} d7, 

where r~ is the intrinsic frequency w +  U k .  Some manipulation shows that 
the form of Do given in (16) leads to a memory function 

0 

- m  

-m 

1 
H(t )  = -(u:){exp U’/3,t)[Ci(h) sinh-t{&r-Si(h))cosh], 

77 

where Ci and Si are the cosine and sine integral functions discussed by Gautschi 
& Cahill (1964), and h = - U‘a,!llt. 

While the exact form of the memory function associated with the dynamical 
theory is not of significance, it may be of interest in the development of pheno- 
menological models to isolate the characteristic time scales of this function. 
Formally, there are two time scales, namely 

T~ = [U’&,]-l and 7, = [U’ala]-l. 

The frequency I/T, will be recognized immediately as the limit as k, -+ 0 of the 
frequency bandwidth AW of the spectrum X, discussed in $4. Noting that the 
parameter a is associated with the wavenumber Ic, at which the wavenumber 
spectrum begins to fall off by k, = a/z, it follows that the frequency 1/7, = U, kc /3, 
is the bandwidth Aw at the wavenumber Ic,. These observations suggest a 
sensitivity of the dynamics of turbulent stress generation to the details of the 
turbulent energy distribution near the dispersion relation o = - Uk,, which has 
not previously been noted. 

I am grateful to Frank Champagne, Carl Gibson and Carl Friehe of the Uni- 
versity of California at San Diego for their help in finding the data used here. 
I am also grateful to the Office of Naval Research, which has patiently supported 
this work under contract N00014-69-A-0200-6006. 
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FIGURE 5. Contour used t o  evaluate integrals (AI)  and (A2). 

Appendix 
With the cross-spectrum X, modelled by (14) and (15), it is possible to evaluate 

Do and D, directly from their definitions in (13). It is convenient first to evaluate 
the integral over w using integration in the complex plane and the method of 
residues. The frequency function F contributes simple poles at  

0 + Uk, = i ~ 3 U l ~ ;  

the function Q-l contributes a pole in the upper half-plane (since ,u is positive), 
which may be avoided by closing the contour from below. Carrying out the 
integrations, then letting ,u go to zero, yieIds 

1 
Do(l,z)  = - - - (uD)zas U(Z) 77 a~+x2p+i (xo+yo) '  

where x = lc, z ,  y = wz/U(z ) ,  a caret denotes evaluation at  z2 ,  and the subscript 
0 denotes quantities involving w,, k,  in place of w ,  El.  Because of the expected 
decay of R away from the point x = x 2 ,  D,(l, z,  z 2 )  < D,(l, z ,  z )  and this latter 
quantity will soon be found negligible for long waves. Substituting the form for 
f l  and noting the symmetry of the integrands about x = 0 converts these ex- 
pressions to 

where y = Po + i (w,  + Uk,) /U' .  In the context of the long-wave approxima- 
tion, xo = k,z is a small number; consequently the term in (13u) associated 
with D, should be negligible. From ( A l )  and (A2) it  follows that D,/D, is 
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O(U'kz/U,) = O ( k ) ;  consequently the D, term in (13a)  is negligible so long as 
kz < 1 and the vertical scale of (U,} is not large compared with z. 

The above integral determining Do is easily evaluated when it is noted that 

where c is the contour depicted in figure 5. This results in the relatively simple 
expression for Do given in ( 16). 
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